Tikrit university College of Engineering Mechanical Engineering Department

Lectures on Engineering Analysis

Chapter 4 Fourier Series

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

Engineering Analysis

Assist

Fourier Series

When the French mathematician Joseph Fourier (1768–1830) was trying to solve a problem in heat conduction, he needed to express a function as an infinite series of sine and cosine functions which named Fourier series later:

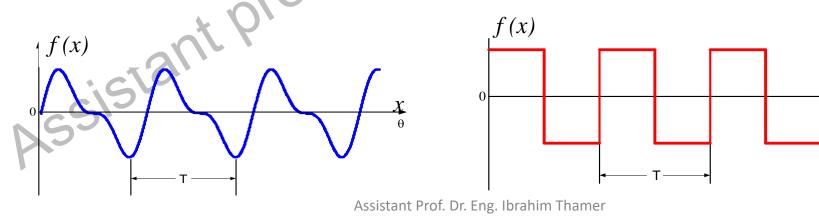
Fourier proposed in 1807 a periodic waveform f(t) could be broken down into an *infinite series of simple sinusoids* which, when added together, would construct the *exact form* of the original waveform.

Fourier series are infinite series that represent periodic functions in terms of cosines and sines.

Periodic Functions

A **periodic function** is a **function** that repeats its values at regular intervals. A function f(x) is said to be periodic function with period T > 0 if for all x, f(x+T) = f(x), and T is the least of such values.

Ex: 1) sin x, cos x are periodic functions with period 2π .

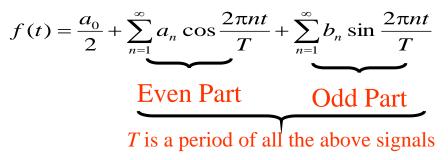


х

Consider the periodic function f(t) = f(t + nT); $n = \pm 1, \pm 2, \pm 3, ...$

T = Period, the smallest value of T that satisfies the above Equation.

Then the *Fourier series* representation of *f* is a trigonometric series (sine and cosine terms)



Suppose f is a periodic function with a period T = 2L. Then the *Fourier series* representation of f is a trigonometric series (that is, it is an infinite series consists of sine and cosine terms) of the form.

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

Where the coefficients are given by

$$f(x) \, dx \qquad a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} \, dx \qquad b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} \, dx$$

Definition of Fourier series

1) Let f(x) be a function defined in $(0, 2\pi)$. Let $f(x+2\pi) = f(x)$, then the Fourier Series of f(x) is given by $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{2\pi nt}{T} + \sum_{n=1}^{\infty} b_n \sin \frac{2\pi nt}{T}$ (nx) f(x) is a periodic function;

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

Where a_0 , a_n and b_n are constants.

 $a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx \qquad a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx \qquad b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx$

Where a_0 , a_n and b_n are called as Fourier coefficient of f(x) in $(0, 2\pi)$.

2) Let f(x) be a function defined in $(-\pi, \pi)$. Let $f(x+2\pi) = f(x)$, then the Fourier Series of f(x) is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

where
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \qquad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

Where a_0 , a_n and b_n are as Fourier coefficient of f(x) in $(-\pi, \pi)$

3) Let f(x) be a function defined in (0, 21). Let f(x+2l)=f(x), then the Fourier Series of f(x) is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$$

where

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$$

$$a_0 = \frac{1}{l} \int_0^{2l} f(x) \, dx \quad a_n = \frac{1}{l} \int_0^{2l} f(x) \cos \frac{n\pi x}{l} \, dx \qquad b_n = \frac{1}{l} \int_0^{2l} f(x) \sin \frac{n\pi x}{l} \, dx$$

Where a_0 , a_n and b_n are as Fourier coefficient of f(x) in (0, 21).

Let f(x) be a function defined in (- l, l). Let f(x+2l) = f(x), then the Fourier Series of f(x) is given by

where
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$$

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) \, dx \quad a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} \, dx \qquad b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} \, dx$$

Where a_0, a_n and b_n are as Fourier coefficient of f(x) in (-1, 1). n ano

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{2\pi nt}{T} + \sum_{n=1}^{\infty} b_n \sin \frac{2\pi nt}{T}$$

Examples on Fourier Series

1) Expand the Fourier series to represent $f(x) = x^2$ in the interval $(0, 2\pi)$

Solution : We recall the Fourier series of
$$f(x)$$
 that defined in the interval $(0, 2\pi)$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
where $a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx$ $\int x^6 \cdot e^x \, dx$
 $a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx$
 $b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx$
Here $f(x) = x^2$
 $a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx = \frac{1}{\pi} \int_0^{2\pi} x^2 \, dx$
 $= \frac{1}{\pi} \left[\frac{x^3}{3} \right]_0^{2\pi} = \frac{1}{3\pi} [(2\pi)^3 - 0] = \frac{8}{3}\pi^2$
 $a_n = \frac{1}{\pi} \int_0^{2\pi} \frac{x^2}{u} \frac{\cos nx}{dx} \, dx$
 $\int u \, dv = uv - \int v \, du$
 $\int u \, dv = uv - \int v \, du$

$$b_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x^{2}}{x^{2}} \sin nx \, dx$$

$$= \frac{1}{\pi} \left[x^{2} \int \sin nx \, dx - \left\{ \int \frac{d}{dx} (x^{2}) (\int \sin nx \, dx) dx \right\} \right]^{2\pi} \quad [\because \int uv \, dx = u \int v \, dx - \left\{ \int \frac{du}{dx} \cdot (\int v \, dx) dx \right\} \right]$$

$$= \frac{1}{\pi} \left[x^{2} \left(-\frac{\cos nx}{n} \right) - \left\{ \int 2x \left(-\frac{\cos nx}{n} \right) dx \right\} \right]_{0}^{2\pi} \quad \int udv = uv - \int vdu$$

$$= \frac{1}{\pi} \left[-x^{2} \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \left\{ \int \frac{x}{u} \frac{\cos nx}{dv} dx \right\} \right]_{0}^{2\pi} \quad table's mathod$$

$$= \frac{1}{\pi} \left[-x^{2} \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \left(x \frac{\sin nx}{n} - \frac{1}{n} \int \sin nx \, dx \right) \right]_{0}^{2\pi} \quad table's mathod$$

$$= \frac{1}{\pi} \left[-x^{2} \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \left(x \frac{\sin nx}{n} + \frac{1}{n} \frac{\cos nx}{n} \right) \right]_{0}^{2\pi} \quad table's mathod$$

$$= \frac{1}{\pi} \left[-x^{2} \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \left(x \frac{\sin nx}{n} + \frac{1}{n} \frac{\cos nx}{n} \right) \right]_{0}^{2\pi} \quad table's mathod$$

$$= \frac{1}{\pi} \left[-x^{2} \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \left(x \frac{\sin nx}{n} + \frac{1}{n} \frac{\cos nx}{n} \right) \right]_{0}^{2\pi} \quad table's mathod$$

$$= \frac{1}{\pi} \left[-x^{2} \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \left(x \frac{\sin nx}{n} + \frac{1}{n} \frac{\cos nx}{n} \right) \right]_{0}^{2\pi} \quad table's mathod$$

$$= \frac{1}{\pi} \left[-x^{2} \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \left(x \frac{\sin nx}{n} + \frac{1}{n} \frac{\cos nx}{n} \right) \right]_{0}^{2\pi} \quad table's mathod$$

$$= \frac{1}{\pi} \left[-x^{2} \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \left(x \frac{\sin nx}{n} + \frac{1}{n} \frac{\cos nx}{n} \right) \right]_{0}^{2\pi} \quad table's mathod$$

$$= \frac{1}{\pi} \left[-x^{2} \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \left(x \frac{\sin nx}{n} + \frac{1}{n} \frac{\cos nx}{n} \right) \right]_{0}^{2\pi} \quad table's mathod$$

$$= \frac{1}{\pi} \left[-x^{2} \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \left(x \frac{\sin nx}{n} + \frac{1}{n} \frac{\cos nx}{n} \right) \right]_{0}^{2\pi} \quad table's mathod$$

$$= \frac{1}{\pi} \left[-x^{2} \left(\frac{\cos nx}{n} \right) + \frac{2}{n^{2}} \left(x \sin nx + \frac{2}{n} \cos nx} \right]_{0}^{2\pi} \quad table's \frac{\sin nx}{n^{2}} \right]_{0}^{2\pi} \quad table's \frac{\sin nx}{n^{2}} + \frac{2}{n^{2}} \left(x \frac{\sin nx}{n^{2}$$

Example 2 Expand in Fourier series of $f(x) = x \sin x$ for $0 \le x \le 2\pi$:

=

Sol.
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \quad \text{where} \quad a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx \\ a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx \quad \int u \, dv = uv - \int v \, du \\ a_0 = \frac{1}{\pi} \int_0^{2\pi} \frac{x}{n} \sin x \, dx \quad \int u \, dv = uv - \int v \, du \\ = \frac{1}{\pi} \left[x(-\cos x) - (1)(-\sin x) \right]_0^{2\pi} \\ = \frac{1}{\pi} \left[(-2\pi + 0) - (0 + 0) \right] = -2 \quad \text{Product to Sum Formulas} \\ a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx \\ a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx \\ a_n = \frac{1}{\pi} \int_0^{2\pi} x \sin x \cos nx \, dx \\ a_n = \frac{1}{\pi} \int_0^{2\pi} x (\cos nx \sin x) \, dx \\ = \frac{1}{2\pi} \int_0^{2\pi} x (\cos nx \sin x) \, dx \\ = \frac{1}{2\pi} \int_0^{2\pi} x \sin (n+1)x - \sin(n-1)x \right] \, dx , \quad n \neq 1$$

$$\begin{aligned} &= \frac{1}{2\pi} \left[(x) \left(\frac{-\cos(n+1)x}{n+1} \right) - (1) \left(\frac{-\sin(n+1)x}{(n+1)^2} \right) \right]_{0}^{2\pi} \\ &= \frac{1}{2\pi} \left[(x) \left(\frac{-\cos(n-1)x}{n-1} \right) - (1) \left(\frac{-\sin(n-1)x}{(n-1)^2} \right) \right]_{0}^{2\pi} \\ &= \frac{1}{2\pi} \left[\left[\frac{-2\pi(-1)^{2m^2}}{n+1} + 0 \right] - (1) \left(\frac{-\sin(n-1)x}{(n-1)^2} \right) \right]_{0}^{2\pi} \\ &= \frac{1}{2\pi} \left[\frac{1}{2\pi} \left[\frac{-2\pi(-1)^{2m^2}}{n+1} + 0 \right] - (1) \left[\frac{-2\pi(-1)^{2m^2}}{n-1} + 0 \right] - [2\pi(-1)^{2m^2}] \\ &= \frac{1}{2\pi} \left[\frac{1}{2\pi} \right] \right] \right]_{0}^{2\pi} \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} x \sin x \sin nx \, dx \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} x (2\sin nx \sin x) \, dx \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} x (\cos(n-1)x - \cos(n+1)x] \, dx , \quad n \neq 1 \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} x \cos(n-1)x \, dx - \frac{1}{2\pi} \int_{0}^{2\pi} x \cos(n+1)x \, dx \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} x \cos(n-1)x - \frac{1}{2\pi} \int_{0}^{2\pi} x \cos(n+1)x \, dx \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} x \cos(n-1)x - \frac{1}{2\pi} \int_{0}^{2\pi} x \cos(n+1)x \, dx \\ &= \frac{1}{2\pi} \left[\frac{$$

$$\begin{aligned} &= \frac{1}{2\pi} \left[\left(x \right) \left(\frac{\sin(n-1)x}{n-1} \right) - \left(1 \right) \left(\frac{-\cos(n-1)x}{(n-1)^2} \right) \right]_0^{2\pi} \\ &\quad - \frac{1}{2\pi} \left[\left(x \right) \left(\frac{\sin(n+1)x}{n+1} \right) - \left(1 \right) \left(\frac{-\cos(n+1)x}{(n+1)^2} \right) \right]_0^{2\pi} \\ &= \frac{1}{2\pi} \left[\left\{ 0 + \frac{(-1)^{2n-2}}{(n-1)^2} \right\} - \left\{ 0 + \frac{1}{(n-1)^2} \right\} \right] - \frac{1}{2\pi} \left[\left\{ 0 + \frac{(-1)^{2n+2}}{(n+1)^2} \right\} - \left\{ 0 + \frac{1}{(n+1)^2} \right\} \right] \end{aligned}$$

$$\begin{aligned} \text{When n = 1, we have} \\ &b_1 = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin x \, dx = \frac{1}{\pi} \int_0^{2\pi} x \sin x \sin x \, dx \\ &= \frac{1}{\pi} \int_0^{2\pi} f(x) \sin x \, dx = \frac{1}{\pi} \int_0^{2\pi} x \sin x \sin x \, dx \\ &= \frac{1}{\pi} \int_0^{2\pi} x \sin^2 x \, dx = \frac{1}{\pi} \int_0^{2\pi} x \left(\frac{1 - \cos 2x}{4} \right) \, dx \\ &b_n = 0 \ , \ n \neq 1 \end{aligned}$$

$$\begin{aligned} f(x) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \\ &= \frac{a_0}{2} + a_1 \cos x + \sum_{n=2}^{\infty} a_n \cos nx + b_1 \sin x + \sum_{n=2}^{\infty} b_n \sin nx \end{aligned}$$

$$=\frac{-2}{2} - \frac{1}{2}\cos x + \sum_{n=2}^{\infty} \frac{2}{(n-1)(n+1)}\cos nx + \pi\sin x + 0$$

r Nazzal

Example 3) Expand $f(x) = x - x^2$ as a Fourier series in -l < x < l.

Solution

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$$
where
$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) \, dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} \, dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} \, dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} \, dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} \, dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} \, dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} \, dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} \, dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} \, dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} \, dx$$

$$= \frac{1}{l} \left[\left\{ \frac{l^2}{2} - \frac{l^3}{3} \right\}_{-l}^{l} - \left\{ \frac{l^2}{2} + \frac{l^3}{3} \right\}_{-l}^{l} = \frac{1}{l} \left(\frac{-2l^3}{3} \right) = \frac{-2l^2}{3} \quad (\sin(-n\pi)) = -\sin(n\pi) = 0 \quad \text{for all integer } n \text{ for all integer } n \text{ cos}(-n\pi) = \cos(n\pi) = (-1)^n \quad \text{for all integer } n \text{ an } n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} \, dx = \frac{1}{l} \int_{-l}^{l} (x - x^2) \cos \frac{n\pi x}{l} \, dx$$

$$= \frac{1}{l} \left[\left(x - x^2) \left(\frac{\sin \frac{n\pi x}{l}}{\frac{n\pi}{l}} \right) - (1 - 2x) \left(\frac{-\cos \frac{n\pi x}{l}}{\frac{n^2 \pi^2}{l^2}} \right) + (-2) \left(\frac{-\sin \frac{n\pi x}{l}}{\frac{n^3 \pi^3}{l^3}} \right) \right]_{-l}^{l}$$

$$= \frac{1}{l} \left[\left\{ 0 + (1 - 2l) \left(\frac{(-1)^{n}l^2}{n^2 \pi^2} \right) + 0 \right\} - \left\{ 0 + (1 + 2l) \left(\frac{(-1)^{n}l^2}{n^2 \pi^2} \right) + 0 \right\} \right]$$

$$= \frac{(-1)^n l^2}{l n^2 \pi^2} \left[1 - 2l - 1 - 2l \right] = \frac{(-1)^n l}{n^2 \pi^2} \left[-4l \right]$$

$$A_n = \frac{4 l^2 (-1)^{n+1}}{n^2 \pi^2} \left[1 - 2l - 1 - 2l \right]$$

$$b_{n} = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \models \frac{1}{l} \int_{-l}^{l} (x - x^{2}) \sin \frac{n\pi x}{l} dx$$

$$= \frac{1}{l} \left[(x - x^{2}) \left(\frac{-\cos \frac{n\pi x}{l}}{\frac{n\pi}{l}} \right) - (1 - 2x) \left(\frac{-\sin \frac{n\pi x}{l}}{\frac{n^{2}\pi^{2}}{l^{2}}} \right) + (-2) \left(\frac{\cos \frac{n\pi x}{l}}{\frac{n^{3}\pi^{3}}{l^{3}}} \right) \right]_{-l}^{l}$$

$$= \frac{1}{l} \left[\left\{ -(l - l^{2}) \left(\frac{(-1)^{n}l}{n\pi} \right) + 0 \frac{2(-1)^{n}l^{3}}{n^{3}\pi^{3}} \right\} - \left\{ -(l - l^{2}) \left(\frac{(-1)^{n}l}{n\pi} \right) + 0 \frac{2(-1)^{n}l^{3}}{n^{3}\pi^{3}} \right\} \right]$$

$$= \frac{-(-1)^{n}l}{l} \left[l - l^{2} + l + l^{2} \right]$$

$$= \frac{(-1)^{n+1}}{n\pi} \left[l - l^{2} + l + l^{2} \right]$$

$$= \frac{2l(-1)^{n+1}}{n\pi}$$

$$f(x) = \frac{a_{0}}{2} + \sum_{n=1}^{\infty} (a_{n} \cos \frac{n\pi x}{l} + b_{n} \sin \frac{n\pi x}{l})$$

$$= \frac{1}{2} \left(\frac{-2l^{2}}{3} \right) + \sum_{n=1}^{\infty} \left(\frac{4l^{2}(-1)^{n+1}}{n^{2}\pi^{2}} \cos \frac{n\pi x}{l} + \frac{2l(-1)^{n+1}}{n\pi} \sin \frac{n\pi x}{l} \right)$$

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

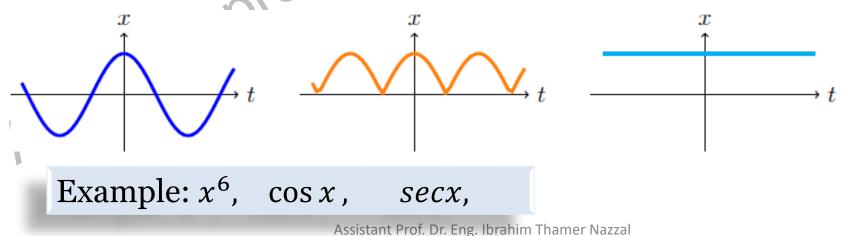
Fourier Series for Even and Odd Function

 $(odd) \times (odd) = (even)$

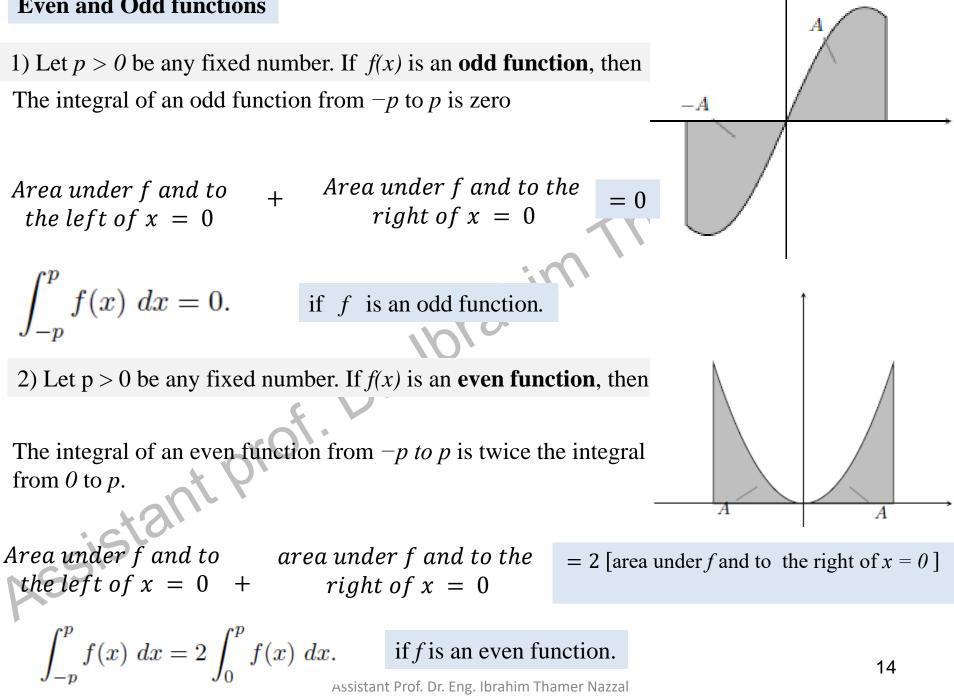
13

Even Function: A function F(x) is called an even function if F(-x) = F(x)

The graph of an even function symmetric about the y- axis



Even and Odd functions



Fourier Series of Even Function

Let f(x) be a function defined in (-1, 1). Let f(x+2l) = f(x), then the Fourier Series of f(x) is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$$
where

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx \quad a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$$
Case 1) If $f(x)$ is an even function of period 2 l, then

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l}$$
Since $\cos nx$ is an even function, $f(x)$ is an even function
 \Rightarrow Product of two even functions is even

$$a_n = \frac{1}{l} \int_{-l}^{l} \frac{f(x)}{even} \cos \frac{n\pi x}{l} dx$$

$$b_n = \frac{1}{p} \int_{-p}^{p} \underbrace{f(x) \sin \frac{n\pi x}{p}}_{even} dx = 0$$
(i) $a_0 = \frac{2}{l} \int_{0}^{l} F(x) dx$
(ii) $a_n = \frac{2}{l} \int_{0}^{l} F(x) \cos \frac{n\pi x}{l} dx$, $n = 1, 2, 3, ...$ (iii) $b_n = 0$

If a periodic function f(x) is an even function we have already used the fact that its Fourier series will involve only cosines 15

Case (2): Fourier Series of Odd Function

 $(even) \times (odd) = (odd)$ $(odd) \times (odd) = (even)$

If F(x) is an odd function of period 2*l*, then If f(x) is odd, then we get

$$F(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}$$

Where, (i) $a_0 = 0$ (ii) $a_n = 0$ (iii) $b_n = \frac{2}{l} \int_0^l F(x) \underbrace{\sin \frac{n\pi x}{l}}_l dx$, n = 1, 2, 3...

 $odd \quad odd \quad = even$

$$a_0 = \frac{1}{p} \int_{-p}^{p} \overbrace{f(x)}^{\text{odd}} dx = 0$$

$$a_n = \frac{1}{p} \int_{-p}^{p} \underbrace{\underbrace{f(x)}_{\text{odd}} \underbrace{\cos(\frac{n\pi x}{p})}_{\text{even}}}_{\text{even}} dx = 0$$

 $sin \frac{n\pi x}{l}$ is an odd function, f(x) is an odd function Product of two odd functions is even

Thus, if a function *f*(*x*) is Odd in (-*l*, *l*), its Fourier series expansion contains only sine terms.

Half Range Series

The Fourier series which contains terms of sine or cosine only is known as half range Fourier sine series or half range Fourier cosine series.

Case-1 Half range Fourier cosine series:

F(x) =

For the half range Fourier cosine series of the function f(x) in the range (0,l), we extend the function f(x) over the range (-l, l). So that the function become even function.

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l}$$
(i) $a_0 = \frac{2}{l} \int_0^l F(x) dx$ (ii) $a_n = \frac{2}{l} \int_0^l F(x) \cos \frac{n\pi x}{l} dx$, $n = 1, 2, 3, ...$ 16

Half Range Fourier Cosine Series defined in $(0, \pi)$: The Fourier half range Cosine series in $(0, \pi)$ is given by Nazza

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

(i)
$$a_0 = \frac{2}{\pi} \int_0^{\pi} F(x) dx$$
 (ii) $a_n = \frac{2}{\pi} \int_0^{\pi} F(x) \cos nx \, dx$, $n = 1, 2, 3, ...$

This is Similar to the Fourier series defined for even function in $(-\pi, \pi)$.

Case-2 Half range Fourier sine series:

For half range Fourier sine series of function f(x), in the range (0, l), we extend the function f(x)over the range (-l, l); so that the function becomes odd function.

$$F(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \qquad b_n = \frac{2}{l} \int_0^l F(x) \sin \frac{n\pi x}{l} dx , n = 1, 2, 3 \dots$$

Half Range Fourier Sine Series defined in $(0, \pi)$: The Fourier half range sine series in $(0, \pi)$ π) is given by

$$F(x) = \sum_{n=1}^{\infty} b_n \sin nx$$
 where $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$, $n = 1,2,3...$

This is Similar to the Fourier series defined for odd function in $(-\pi, \pi)$.

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

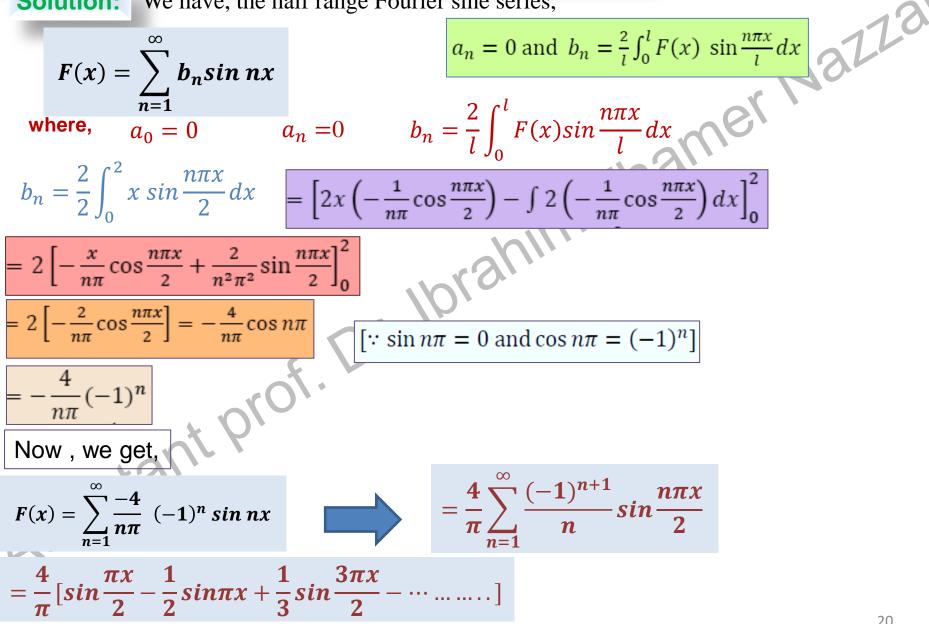
17

Example Find the Fourier Series of the $F(x) = x, -\pi \le x \le \pi$ **Solution:** Given, F(x) = x, Here, F(-x) = -x = -F(x)amer Natt Therefore, F(x) is an odd function. We have Fourier Series of Odd function \swarrow $F(x) = \sum_{n=1}^{\infty} b_n sinnx$ Here, $b_n = \frac{2}{\pi} \int_0^{\pi} F(x) \sin \frac{n\pi x}{\pi} dx = \frac{2}{\pi} \int_0^{\pi} x \sin nx \, dx$ $= \frac{2}{\pi} \left[x \left(-\frac{\cos nx}{n} \right) - \int 1 \left(-\frac{\cos nx}{n} \right) dx \right]_{0}^{\pi}$ $=\frac{2}{\pi}\left[-\frac{x\cos nx}{n}+\frac{\sin nx}{n^2}\right]_0^{\pi}=\frac{2}{\pi}\left[-\frac{\pi\cos n\pi}{n}\right]_0^{\pi}$ $= -\frac{2}{n}(-1)^n = \frac{2}{n}(-1)^{n+1} \qquad [\because \sin n\pi = 0 \text{ and } \cos n\pi = (-1)^n]$ Now from (i) we get, $F(x) = \sum_{n=1}^{\infty} \frac{2}{n} (-1)^{n+1} sinnx = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx$ $= 2 \left[\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \cdots \right]$ 18 Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

Example : Find the Fourier Series of the $F(x) = x^2, -\pi \le x \le \pi$ **Solution:** Given, $F(x) = x^2$, *Here*, $F(-x) = (-x)^2 = F(x)$ Therefore, F(x) is an even function. We have Fourier Series of Even function Here $a_0 = \frac{2}{\pi} \int_0^{\pi} F(x) dx = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2\pi^3}{3}$ (ii) i) $a_n = \frac{2}{\pi} \int_0^{\pi} F(x) \cos nx dx$ (ii) $a_n = \frac{2}{\pi} \int_0^{\pi} F(x) \cos nx \, dx$ $=\frac{2}{\pi}\int_{0}^{\pi}x^{2}\cos nx\,dx = \frac{2}{\pi}\left[x^{2}\left(\frac{\sin nx}{n}\right) - \int_{0}^{\pi}2x\left(\frac{\sin nx}{n}\right)dx\right]_{0}^{\pi}$ $= \frac{2}{\pi} \left[x^2 \left(\frac{\sin nx}{n} \right) - 2x \left(-\frac{\cos nx}{n^2} \right) + 2 \left(-\frac{\sin nx}{n^3} \right) \right]_{\alpha}^{\pi}$ $= \frac{2}{\pi} \left[x^2 \left(\frac{\sin nx}{n} \right) - 2x \left(-\frac{\cos nx}{n^2} \right) + 2 \left(-\frac{\sin nx}{n^3} \right) \right]_0^{\pi} = \frac{2}{\pi} \left[0 + \frac{2\pi}{n^2} \cos n\pi + 0 \right] = \frac{4}{n^2} (-1)^n \dots (iii)$ Now from (i) we get, $f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} (-)^n \cos nx$ $= \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} (-1)^n \cos nx = \frac{\pi^2}{3} - 4 \left[\frac{\cos x}{1^2} - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} - \cdots \right]$ 19

Example: F(x) = x, $0 \le x \le 2$ in a half sine series

Solution: We have, the half range Fourier sine series,



Example Find the half range sine series of $f(x) = x \cos x$ in $(0, \pi)$. thamer Wazzal **Sol.** Fourier sine series is $F(x) = \sum b_n \sin nx$ $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_0^{\pi} x \cos x \sin nx \, dx$ $=\frac{1}{\pi}\int_{-\infty}^{\infty}x(2\sin nx\cos x)\,dx$ $= \frac{1}{\pi} \int x [\sin(n+1)x + \sin(n-1)x] dx , \quad n \neq 1$ $= \frac{1}{\pi} \int_{-\infty}^{\infty} x \sin(n+1) x \, dx + \frac{1}{\pi} \int_{-\infty}^{\infty} x \sin(n-1) x \, dx \, , \, n \neq 1$ $b_n = \frac{1}{\pi} \left| x \left(\frac{-\cos(n+1)x}{n+1} \right) - (1) \left(\frac{-\sin(n+1)x}{(n+1)^2} \right) \right|^n + \frac{1}{\pi} \left| x \left(\frac{-\cos(n-1)x}{n-1} \right) - (1) \left(\frac{-\sin(n-1)x}{(n-1)^2} \right) \right|^n$ $= \frac{1}{\pi} \left| \left\{ \frac{-\pi (-1)^{n+1}}{n+1} + 0 \right\} - \left\{ 0 + 0 \right\} \right| + \frac{1}{\pi} \left| \left\{ \frac{-\pi (-1)^{n-1}}{n-1} + 0 \right\} - \left\{ 0 + 0 \right\} \right|$ $= \frac{(-1)^{n+2}}{n+1} + \frac{(-1)^n}{n-1} = (-1)^n \left| \frac{1}{n+1} + \frac{1}{n-1} \right| = (-1)^n \left[\frac{2n}{(n+1)(n-1)} \right] \quad (i.e.) b_n = \frac{2n(-1)^n}{n^2 - 1}, \ n \neq 1$

When n = 1, we have

When n = 1, we have

$$b_{1} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin x \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos x \sin x \, dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} x \sin 2x \, dx$$

$$= \frac{1}{\pi} \left[x \left(\frac{-\cos 2x}{2} \right) - (1) \left(\frac{-\sin 2x}{4} \right) \right]_{0}^{\pi}$$

$$= \frac{1}{\pi} \left[\left\{ \pi \left(\frac{-1}{2} \right) + 0 \right\} - \{0 + 0\} \right] = -\frac{1}{2}$$

$$f(x) = \sum_{n=1}^{\infty} b_{n} \sin nx = b_{1} \sin x + \sum_{n=1}^{\infty} b_{n} \sin nx$$

$$= \frac{1}{\pi} \left[x \left(\frac{-\cos 2x}{2} \right) - (1) \left(\frac{-\sin 2x}{4} \right) \right]_{0}^{\pi}$$
$$= \frac{1}{\pi} \left[\left\{ \pi \left(\frac{-1}{2} \right) + 0 \right\} - \{0 + 0\} \right] = -\frac{1}{2}$$

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx = b_1 \sin x + \sum_{n=2}^{\infty} b_n \sin nx$$

$$= -\frac{1}{2}\sin x + \sum_{n=2}^{\infty} \frac{2n(-1)^{n}}{n^{2} - 1}\sin nx$$

Example Find the half range cosine series for the function $f(x) = x (\pi - x)$ in $0 < x < \pi$. $F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$ Half range fourier cosine series is Sol. $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \, dx = \frac{2}{\pi} \int_0^{\pi} x(\pi - x) \, dx$ $= 2\frac{2}{n^2}[(-1)^n + 1]$ $=\frac{2}{\pi}\left[\frac{\pi x^2}{2}-\frac{x^3}{3}\right]_{0}^{\pi}$ $=\frac{2}{\pi}\left[\left(\frac{\pi^{3}}{2}-\frac{\pi^{3}}{3}\right)-(0-0)\right]$ $a_n = -\frac{4}{n^2}$, when *n* is even In Ibrai = 0 , when *n* is odd $=\frac{2}{\pi}\left[\frac{\pi^3}{6}\right] \qquad =\frac{\pi^2}{2}$ $a_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x(\pi - x) \cos nx \, dx$ $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$ $=\frac{2}{\pi} \left[(\pi x - x^2) \left(\frac{\sin nx}{n} \right) - (\pi - 2x) \left(\frac{-\cos nx}{n^2} \right) + (-2) \left(\frac{-\sin nx}{n^3} \right) \right]^{\pi}$ $=\frac{1}{2}\left(\frac{\pi^2}{3}\right) + \sum_{n=1}^{\infty} -\frac{4}{n^2}\cos nx$ $=\frac{2}{\pi}\left|\left\{0+\frac{(-\pi)(-1)^{n}}{n^{2}}+0\right\}-\left\{0+\frac{(\pi)(1)}{n^{2}}+0\right\}\right|$ $=\frac{2\pi}{\pi n^2}\left[-(-1)^n-1\right]$

Complex Fourier Series

The Complex Fourier Series is the Fourier Series but written using e^{ix}

In order to derive the complex Fourier series, we first recall from last lecture the trigonometric Fourier series representation of a function defined on [-l, l] with period 2 π . The Fourier series is given by $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$ $a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$

where the Fourier coefficients were found as

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx$$

In order to derive the exponential Fourier series, we replace the trigonometric functions with exponential functions and collect like exponential terms.

$$\cos \frac{n\pi}{l} x = \frac{e^{i\frac{n\pi x}{l}} + e^{-i\frac{n\pi x}{l}}}{2} \qquad \sin \frac{n\pi}{l} x = \frac{e^{i\frac{n\pi x}{l}} - e^{-i\frac{n\pi x}{l}}}{2i}$$
This gives
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \left(\frac{e^{i\frac{n\pi x}{l}} + e^{-i\frac{n\pi x}{l}}}{2} \right) + b_n \left(\frac{e^{i\frac{n\pi x}{l}} - e^{-i\frac{n\pi x}{l}}}{2i} \right) \right]$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - ib_n}{2} \right) e^{i\frac{n\pi x}{l}} \right] + \sum_{n=1}^{\infty} \left[\left(\frac{a_n + ib_n}{2} \right) e^{-i\frac{n\pi x}{l}} \right]$$
The coefficients of the complex exponentials can be rewritten by defining
$$c_n = \frac{a_n - ib_n}{2} \qquad \overline{c_n} = \frac{a_n + ib_n}{2}$$

So far, the representation is rewritten as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(c_n \ e^{i\frac{n\pi x}{l}} \right) + \sum_{n=1}^{\infty} \left(\bar{c}_n \ e^{-i\frac{n\pi x}{l}} \right)$$

Re-indexing the first sum, by introducing k = -n, we can write

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(c_n \ e^{i\frac{n\pi x}{l}} \right) + \sum_{k=-1}^{\infty} \left(\bar{c}_{-k} \ e^{i\frac{k\pi x}{l}} \right)$$

Since k is a dummy index, we replace it with a new n as
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(c_n \ e^{i\frac{n\pi x}{l}} \right) + \sum_{n=-1}^{\infty} \left(\bar{c}_{-n} \ e^{i\frac{n\pi x}{l}} \right)$$
$$\frac{\bar{c}_n = \frac{a_n + i b_n}{2}}{c_n = \frac{a_n + i b_n}{2}}$$
$$a_{-n} = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{-n\pi x}{l} dx = a_n$$
$$b_{-n} = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{-n\pi x}{l} dx = -b_n$$
$$c_n = \bar{c}_{-n} = \frac{a_n - i b_n}{2}$$

Letting $c_0 = \frac{a_0}{2}$ we can write the complex exponential Fourier series representation as

Complex Fourier Series for a function of period 2l

$$f(x) = \sum_{n=-\infty}^{\infty} \left(c_n \ e^{i\frac{n\pi x}{l}} \right)$$

Complex Fourier Series for a function of period 2π : $f(x) = \sum_{n=-\infty}^{\infty} (c_n e^{inx})$

Nazza

Given such a representation, we would like to write out the integral forms of the coefficients, c_n . So, we replace the a_n 's and b_n 's with their integral representations and replace the trigonometric functions with complex exponential functions. Doing this, we have for n = 1, 2, ..., n

$$c_{n} = \frac{a_{n} - i b_{n}}{2}$$

$$c_{n} = \frac{1}{2l} \int_{-l}^{l} f(x) \left(\cos \frac{n\pi x}{l} dx - i \frac{1}{2l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \right)$$

$$c_{n} = \frac{1}{2l} \int_{-l}^{l} f(x) \left(\cos \frac{n\pi x}{l} - i \sin \frac{n\pi x}{l} \right) dx$$

$$c_{n} = \frac{1}{2l} \int_{-l}^{l} f(x) \left(\cos \frac{n\pi x}{l} - i \sin \frac{n\pi x}{l} \right) dx$$

$$b_{n} = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx$$

It is a simple matter to determine the c_n 's for other values of n. For n = 0, we have that

$$c_0 = \frac{a_0}{2} = \frac{1}{2l} \int_{-l}^{l} f(x) \, dx$$

Complex Fourier Series for a function of period 21

$$f(x) = \sum_{n=-\infty}^{\infty} \left(c_n \ e^{i\frac{n\pi x}{l}} \right) \qquad c_n = \frac{1}{2l} \int_{-l}^{l} f(x) \ e^{-i\frac{n\pi x}{l}} dx$$

Complex Fourier Series for a function of period 2π :

$$f(x) = \sum_{n=-\infty}^{\infty} (c_n \ e^{inx})$$

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

Example Find the complex Fourier series for the function $f(x) = e^x$ on the interval [-1, 1] solution

$$f(x) = \sum_{n=-\infty}^{\infty} \left(c_n \ e^{i\frac{n\pi x}{l}}\right) \quad c_n = \frac{1}{2l} \int_{-l}^{l} f(x) \ e^{-i\frac{n\pi x}{l}} dx$$

$$= \frac{1}{2} \int_{-1}^{1} e^x e^{-in\pi x} dx$$

$$= \frac{1}{2} \int_{-1}^{1} e^{(1-in\pi)x} dx$$

$$= \frac{1}{2(1-in\pi)} \left[e^{1-in\pi} - e^{-1+in\pi} \right]$$

$$= \frac{(-1)^n}{2(1-in\pi)} (e-1/e). \text{ The last identity follows since } e^{in\pi} = e^{-in\pi} = (-1)^n.$$
The complex Fourier series is
$$e^x \sim \frac{e-1/e}{2} \sum_{n=-\infty}^{\infty} \frac{(-1)^n}{1-in\pi} e^{in\pi x} \quad \text{for } -1 \le x \le 1.$$

Example

Using complex form, find the Fourier series of the function

$$f\left(x
ight) = \mathrm{sign}\,x = egin{cases} -1, & -\pi \leq x \leq 0 \ 1, & 0 < x \leq \pi \end{cases}$$

Solution

lex form, find the Fourier series of the function

$$gn x = \begin{cases} -1, & -\pi \le x \le 0\\ 1, & 0 < x \le \pi \end{cases}$$

$$f(x) = \sum_{n=-\infty}^{\infty} (c_n \ e^{inx}) \quad c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \ e^{-inx} \ dx$$
the the coefficients c_0 and c_n for

$$f(x) dx = \frac{1}{2\pi} \left[\int_{-\pi}^{0} (-1) \ dx + \int_{-\pi}^{\pi} dx \right] = \frac{1}{2\pi} \left[(-x) \Big|_{-\pi}^{0} + x \Big|_{0}^{\pi} \right]$$

We calculate the coefficients c_0 and c_n for

$$egin{split} c_0 &= rac{1}{2\pi} \int\limits_{-\pi}^{\pi} f\left(x
ight) dx = rac{1}{2\pi} \left[\int\limits_{-\pi}^{0} (-1) \, dx + \int\limits_{0}^{\pi} dx
ight] = rac{1}{2\pi} \Big[(-x) |_{-\pi}^{0} + x |_{0}^{\pi} \Big] \ &= rac{1}{2\pi} (- ec{arphi} + ec{arphi}) = 0, \end{split}$$

$$c_n = rac{1}{2\pi} \int\limits_{-\pi}^{\pi} f\left(x
ight) e^{-inx} dx = rac{1}{2\pi} \left[\int\limits_{-\pi}^{0} (-1) e^{-inx} dx + \int\limits_{0}^{\pi} e^{-inx} dx
ight] \ 1 \left[\left[\left. \left(e^{-inx}
ight)
ight|_{-\pi}^{0} - \left(e^{-inx}
ight)
ight|_{0}^{\pi}
ight] - i \int\limits_{0}^{\pi} e^{-inx} dx
ight]$$

$$= \frac{1}{2\pi} \left[-\frac{(1-\pi)^{2}}{-in} + \frac{(1-\pi)^{2}}{-in} \right] = \frac{1}{2\pi n} \left[-\left(1 - e^{in\pi}\right) + e^{-in\pi} - 1 \right]$$

$$= \frac{i}{2\pi n} \left[e^{in\pi} + e^{-in\pi} - 2 \right] = \frac{i}{\pi n} \left[\frac{e^{in\pi} + e^{-in\pi}}{2} - 1 \right] = \frac{i}{\pi n} \left[\cos n\pi - 1 \right]$$

$$c_n = \frac{i}{\pi n} \left[(-1)^n - 1 \right] \quad f(x) = \sum_{n = -\infty}^{\infty} (c_n \ e^{inx}) \quad f(x) = \sum_{n = -\infty}^{\infty} \frac{i}{\pi n} \left[(-1)^n - 1 \right] e^{inx}$$

Example Find the complex Fourier series for f(x) = x in (-2, 2). or Nazzal $f(x) = \sum_{n=-\infty}^{\infty} \left(c_n \ e^{i\frac{n\pi x}{l}} \right) \qquad c_n = \frac{1}{2l} \int_{-l}^{l} f(x) \ e^{-i\frac{n\pi x}{l}} dx$ solution $c_n = \frac{1}{4} \int_{-2}^{2} x e^{-\pi i n x/2} dx$ We can write Integration by parts $\int u \, dv = uv - \int v \, du$ with u = x and $dv = e^{-\pi i nx/2} dx$ so du = dx and $v = \frac{-2}{-1} e^{-\pi i nx/2}$ $c_{n} = \frac{1}{4} \left[\frac{-2x}{\pi i n} e^{-\pi i n x/2} + \int \frac{2}{\pi i n} e^{-\pi i n x/2} dx \right]^{2} = \frac{1}{4} \left[\frac{-2x}{\pi i n} e^{-\pi i n x/2} - \frac{4}{\pi^{2} i^{2} n^{2}} e^{-\pi i n x/2} \right]^{2} = \left[\frac{-x}{2\pi i n} e^{-\pi i n x/2} + \frac{1}{\pi^{2} n^{2}} e^{-\pi i n x/2} \right]^{2}$ $C_{n} = \left| \frac{-1}{\pi i n} e^{-\pi i n} + \frac{1}{\pi^{2} n^{2}} e^{-\pi i n} \right| - \left| \frac{1}{\pi i n} e^{\pi i n} + \frac{1}{\pi^{2} n^{2}} e^{\pi i n} \right| = \frac{-1}{\pi i n} \left(e^{-\pi i n} + e^{\pi i n} \right) + \frac{1}{\pi^{2} n^{2}} \left(e^{-\pi i n} - e^{\pi i n} \right)$ Since $\frac{-1}{i} \times \frac{i}{i} = i$ then $C_n = \frac{i}{\pi n} \left(e^{-\pi i n} + e^{\pi i n} \right) + \frac{1}{\pi^2 n^2} \left(e^{-\pi i n} - e^{\pi i n} \right)$

It is known that since $e^{\pi i n} = \cos n\pi + i \sin n\pi$ and $e^{-\pi i n} = \cos n\pi - i \sin n\pi$ then $\cos n\pi = \frac{1}{2} \left(e^{-\pi i n} + e^{\pi i n} \right)$ and $\sin n\pi = \frac{-1}{2i} \left(e^{-\pi i n} - e^{\pi i n} \right)$ so we say $C_n = \frac{2i}{\pi n} \cos n\pi - \frac{2i}{\pi^2 n^2} \sin n\pi = \frac{2i}{\pi n} \cos n\pi$ $C_n = \frac{2i}{\pi n} \cos n\pi = \frac{2i}{\pi n} (-1)^n$ then $f(x) = \sum_{n=-\infty}^{\infty} \frac{2i}{\pi n} (-1)^n e^{\pi i n x/2}$

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

29

Example

Find the complex form of the Fourier series of $f(x) = \sin x$ in $(0, \pi)$. The complex form of Fourier series is $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i2nx}$ $c_n = \frac{1}{2l} \int_{-l}^{l} f(x) e^{-i\frac{n\pi x}{l}} dx$

$$c_n = \frac{1}{2l} \int_{-l}^{l} f(x) e^{-i\frac{n\pi x}{l}} dx$$

$$c_n = \frac{1}{\pi} \int_0^\pi \sin x e^{-i2nx} dx$$

$$= \frac{1}{\pi} \left[\frac{e^{-i2nx}}{1 - 4n^2} \{ -i2n\sin x - \cos x \} \right]_0^{\pi}$$
$$= \frac{1}{\pi (4n^2 - 1)} \left[-e^{i2nx} - 1 \right] = -\frac{2}{\pi (4n^2 - 1)}$$

Using this value, we get

 $\sin x = -\frac{2}{\pi} \sum_{n=-\infty}^{\infty} \frac{1}{4n^2 - 1} \cdot e^{i2nx}$ $in(0,\pi)$